There are a number of instances in Solr where it's desirable to retrieve data from an external datastore for boosting purposes instead of trying to contort Solr with multiple queries, joins etc.

Here's a trivial example:

Jobs are stored as documents in Solr. Users of the application can rank a job from 1-10. We need to boost each job with the user's rank if it exists.

Now, to try to attempt to model this fully in Solr would be fairly inefficient, especially for large # of jobs and/or users, since each time a user ranks a job, the searcher has to reload in order for that data to be available for searching.

A much more efficient method of implementing this, is by storing the rank data in a nosql store like Redis, and retrieving the rank at query-time, using it to boost the documents accordingly.

This can be accomplished using a custom FunctionQuery. I've blogged about how to create custom function queries in Solr before, so this is simply an application of the subject.

Here's the code:

public class RedisValueSourceParser extends ValueSourceParser {
  @Override public ValueSource parse(FunctionQParser fp) throws ParseException {
    String idField = fp.parseArg();
    String redisKey = fp.parseArg();
    String redisValue = fp.parseArg();
    return new RedisValueSource(idField, redisKey, redisValue);
  }
}

This FunctionQuery accepts 3 arguments:
1. redisKey
2. redisValue
3. the field to use as an id field

Here's what the salient part of RedisValueSource looks like:

  @Override public DocValues getValues(Map context, IndexReader reader) throws IOException {
    final String[] lookup = FieldCache.DEFAULT.getStrings(reader, idField);
    final Jedis jedis = new Jedis("localhost");
    String v = jedis.hget(redisKey, redisValue);
    final JSONObject obj;
    if (v != null) {
      obj = (JSONObject) JSONValue.parse(v);
    } else {
      obj = new JSONObject();
    }
    jedis.disconnect();
    return new DocValues() {
      @Override public float floatVal(int doc) {
        final String id = lookup[doc];
        Object v = obj.get(id);
        if(v != null) {
          try {
            return Float.parseFloat(v.toString());
          } catch (NumberFormatException e) {
            return 0;
          }
        } return 0;
      }
 
      @Override public int intVal(int doc) {
        final String id = lookup[doc];
        Object v = obj.get(id);
        if(v != null) {
          try {
            return Integer.parseInt(v.toString());
          } catch (NumberFormatException e) {
            return 0;
          }
        } return 0;
      }
 
      @Override public String strVal(int doc) {
        final String id = lookup[doc];
        Object v = obj.get(id);
        return v != null ? v.toString() : null;
      }
 
      @Override public String toString(int doc) {
        return strVal(doc);
      }
    };
  }

From here, you can use the following Solr query to perform boosting based on the Redis value:
http://localhost:8983/solr/select?defType=edismax&q=cat:electronics&bf=redis(id,influence,1001)&debugQuery=on

The explain output looks like this:

3.4664698 = (MATCH) sum of:
  1.070082 = (MATCH) weight(cat:electronics in 2), product of:
    0.80067647 = queryWeight(cat:electronics), product of:
      1.3364723 = idf(docFreq=14, maxDocs=21)
      0.59909695 = queryNorm
    1.3364723 = (MATCH) fieldWeight(cat:electronics in 2), product of:
      1.0 = tf(termFreq(cat:electronics)=1)
      1.3364723 = idf(docFreq=14, maxDocs=21)
      1.0 = fieldNorm(field=cat, doc=2)
  2.3963878 = (MATCH) FunctionQuery(redis(id,influence,1001)), product of:
    4.0 = 4.0
    1.0 = boost
    0.59909695 = queryNorm